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ABSTRACT 

I 
Certain geomagnetic storms exhibi t ,  i n  addi t ion t o  t h e  usual  

i n i t i a l  sudden posi t ive impulse, a subsequent sudden negative 

impulse. The former is normably ascribed t o  a shock wave i n  the 

interplanetary medium, and it has recent ly  been suggested t h a t  t h e  

l a t t e r  may be ascribed t o  a reverse shock convected away f r m  the  

sun by the  so la r  wind. 

If the  ve loc i ty  of e f f lux  o f  gas from a source i s  supersonic 

(with respect t o  the source), i f  t he  ve loc i ty  i s  instantaneously 

increased, and if ce r t a in  subsidiary conditions a re  m e t ,  a p a i r  of 

shock waves w i l l  be produced which propagate away from the  source. 

The "fast" shock propagates away from the  contact surface i n  t h e  

ambient gas (which was ejected from the  source before the  change 

i n  e f f lux  ve loc i ty) ,  while t h e  "slow" shock propagates away from 

the  contact surface i n  t h e  dr iver  gas, but has an outward ve loc i ty  

when t h i s  ve loc i ty  i s  measured r e l a t ive  t o  t h e  source. 

This problem (which may be ident i f ied  with a c l a s s i c a l  problem 

considered by Riemann) i s  discussed in  i t s  r e l a t ion  t o  t h e  produc- 

t i o n  of pa i r s  of shock waves by the  enhanced so lar  wind produced 

by a so la r  f lare .  The equations giving the  re la t ionship  between 

t h e  ve loc i t i e s  of t he  shock waves and of the  ambient and dr iver  

gases become very simple i n  the strong-shock approximation. 
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. 
It i s  shown t h a t  the  propagation times of t he  pos i t ive  and 

negative impulses of the  July 11, 1939 magnetic stoi-h may be 

explained s a t i s f a c t o r i l y  on the basis of t h i s  theory.  

1. INTIIODUCTION 

Following the  o r ig ina l  suggestion of Gold [1955], it i s  now 

general ly  accepted t h a t  the  posi t ive sudden impulse which normally 

marks the  beginning of a geomagnetic storm i s  caused by a shock wave 

in t h e  interplanetary medium (now referred t o  as the  "solar  w i n d "  

[Parker, 19631) which, upon a r r i v a l  at the  ear th ,  compresses the  

magnetosphere. 

a t t en t ion  t o  t h e  l e s s  frequent phenomenon of negative sudden impulse 

and suggested t h a t  t h i s  might be a t t r i bu ted  t o  a "reversel' shock wave 

t r ave l ing  away from the  sun, r e l a t ive  t o  the  sun i t se l f ,  but toward 

t h e  sun, r e l a t i v e  t o  the  solar  wind. 

Sonett and Colburn [1965] have recent ly  drawn 

One of t he  possible mechanisms f o r  t he  generation of such a 

pair of shock waves, i n  addition t o  other  mechanisms described by 

Sonett and Colburn [1963], is  t h a t  both shock waves or ig ina te  near 

the scn as z res1~1lt. of a sudden increase in the  ve loc i ty  (and 

perhaps densi ty)  of t he  s o l a r  wind. 

course t o  be ascribed t o  the solar  f lare responsible f o r  t h e  geo- 

magnetic storm. Since the  quiescent so la r  wind i s  supersonic 

(with respect t o  the  sun), one expects t h a t  the  enhanced so la r  wind 

produced by a flare w i l l  a l so  be supersonic. The s i tua t ion  with 

which w e  are concerned i s  therefore,  i n  i t s  simplest representation, 

This increase i n  f l u x  is  of 
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t h a t  of a dr iver  gas being ejecteu from a source with supersonic 

speed (with respect t o  the source) i n t o  an ambient gas which has 

been ejected with supersonic speed fron the  same source. This 

s i t ua t ion  already possesses one o f  t he  e s s e n t i a l  requirements f o r  

t he  production of a shock p a i r  (consis t ing of a normal shock i n  t h e  

ambient gas and a propagating reverse shock i n  the  dr iver  gas ) ,  namely, 

t h a t  t he  dr iver  gas should have supersonic ve loc i ty  with respect t o  

t h e  source from which the  gas or iginates .  The purpose of t h i s  a r t i c l e  

i s  t o  s e t  up the  simple basic  equations for t he  phenomenon i n  order t o  

determine what fur ther  conditions should be met, and t o  inquire in to  

t h e  l ikel ihood of t h e i r  being met: 

- 

This problem i s  closely related t o  a problem considered by 

Riemann and quoted by Courant and Friedrichs [1948 ( p .  181)] : 

s t r a igh t  tube of uniform cross  section i s  divided into two p a r t s  by 

a plane diaphragm; t o  the  l e f t  of  t he  diaphragm i s  t h e  gas we refer 

t o  a s  t h e  "driver" gas and t o  the r igh t  of t h e  diaphragm i s  t h e  

A 

gas w e  refer t o  as the  I t  ambient" gas .  We now suppose t h a t  means 

e x i s t s  for s e t t i n g  each gas instantaneously in to  uniform motion. 

rm, lllGIL ^U the  i s i%iz l  c m d i t i n n  nfi the problem are  t h a t  the dr iver  gas 

and ambient gas have pressure, density,  and ve loc i ty  

and pa, pa, va, respect ively,  and t h z t ,  a t  t h e  time these conditions 

a re  established, t he  diaphragm is  removed. 

pd, pd, vd 

(See f igure  1.) 

Riemann showed t h a t  t he  system w i l l  behave i n  one of four  

possible  ways involving e i t h e r  a shock wave o r  a rarefact ion wave 

F ig .  1 < 
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i n  each gas .  

gas, it is c l ea r ly  necessary that  the  gases recede from each other ,  

t h a t  is ,  t h a t  v < va. Hence, if we s t ipu la t e  t h a t  vd > va, there  

must be e i t h e r  two shock waves (one i n  each gas)  or a shock wave 

However, for a rarefaction wave t o  be set up in each 

d -  

i n  one gas and a ra refac t ion  wave in  the  other  gas .  

Since we are concerned only with the  poss ib i l i t y  of two 

shock waves being establ ished,  t h i s  i s  the  only case we s h a l l  discuss  

i n  d e t a i l .  

zero, we can f ind  t h e  condition which must be met i n  order t h a t  two 

shock waves should be s e t  up. 

Figure 2 shows the  s i tua t ion  i n  which a shock wave i s  exci ted 

By considering tha t  t h e  s t rength of one shock wave is  

Fig .  2 < 
i n  each gas .  

will be termed t h e  "fast shock" and t h a t  i n  the  dr iver  gas t h e  

"slow shock." 

t h e  ve loc i ty  of t he  contact surface, vc, must be pos i t ive .  

vfS,  t he  ve loc i ty  of t he  f a s t  shock wave, must be pos i t ive .  

t h e  ve loc i ty  vss 

For later purposes, the  shock wave i n  the  ambient gas 

If w e  consider t ha t  vd > va > 0 ,  it i s  c l ea r  t h a t  

Hence 

However, 

of t he  slow shock may have e i t h e r  s ign.  

The case of par t icu lar  in te res t  t o  us  i s  t h a t  vss i s  pos i t i ve .  

ILL t h i s  case, w e  may imagine t h a t  both the  ambient gas and t h e  

d r ive r  gas are ejected by a source, with respect to'which v e l o c i t i e s  

a re  measured. 

i t y  of the  gas e jec ted  by t h e  source are  

subsequent t o  

Up t o  time t = 0, the  pressure, densi ty ,  and veloc- 

pa, pa, va; f o r  times 

t = 0, the pressure, density,  and ve loc i ty  of t h e  

e jec ted  gas a re  pa, pd, vd. 
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One would expect (and t h i s  i s  ve r i f i ed  i n  the  next sect ion)  

t h a t  vss 

flow ( a d  the  conditions of the two gzses are  such t h a t  two shock 

waves Ere generated).  

a shock p a i r ,  of t he  form shown in  Figure 2, propagating away from 

the  source. 

i s  necessar i ly  negative if t he  dr iver  gas i s  i n  subsonic 

Hence a su5sonic dr iver  gas can never produce 

We now proceed t o  a discussion of t he  mathematical r e l a t ions  

governing the  production of a pair  of shock waves by a supersonic 

dr iver  gas .  

2. THE flIOCiC RELATIONS 

We now consider i n  more d e t a i l  the  configuration depicted in 

is  the  pressure of t he  shocked dr iver  gas, Figure 2 i n  which pA 

e t c .  

are a l l  equal, 

The ve loc i t i e s  of t he  shocked gases and of t h e  contact surface 

(2.1) v; = vi = vc 

and the  pressure i s  the  same on both s ides  of the  contact surface: 

P; = P i  (2.2) 

is csii-cenie;lt t= intr&:ce M Z C ~  ryLcbers b dfscij-ssing the  

shock r e l a t ions .  We therefore  introduce the  speed of sound, c ,  where 

c = ( n ? / P Y 2  (2 .3)  

Y being t h e  r a t i o  of spec i f ic  hea ts .  We now characterize the  

v e l o c i t i e s  of t he  ambient gas and shocked ambient gas, with respect 

t o  t h e  fast shock wave, by Mach numbers Ma and MA, wri t ing 
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v -  v2 = M,c, 

Vfs  - vk = M;c; 

f s  

Similarly,  we write - 

v i  - vss = M',c' c d  (2.7) 
Since gas flows in to  a shock wave a t  supersonic ve loc i ty  (measured 

r e l a t i v e  t o  the  shock wave) and emerges a t  subsonic ve loc i ty ,  Ma 

and Q are  grea te r  than uni ty ,  whereas M& and MA are l e s s  than 

un i ty .  

We may note immediately f rom equation (2.6)  t h a t  vss < 0 i f  

vd < cd, t h a t  i s ,  t h a t  t h e  slow shock has negative ve loc i ty  if t h e  

d r ive r  gas i s  i n  subsonic f low,  a r e s u l t  referred t o  in 

Section 1. 

Tne following r e l a t ions  (the Rankine-Hugoniot equations 

[Courant and Friedrichs,  1948 (p .  129) 1 ) hold a t  t h e  fas t  shock, 

and similar r e l a t ions  at the  slow shock. 
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The values of p, p, and N ( o r ,  z l -zxnzt ively,  t he  values of 

p,  c ,  and M) on one side of a shock w v e  determine the  values on 

the  other  side.  For instance,  one may determine N' from M (or 

vice versa)  from the  re la t ion  

(7 - 1)MZ + 2 
27M2 - ( 7  - 1) 

M I 2  = 

Then t h e  dens i t ies ,  pressures,  and sound speeds are  r e l a t ed  by 

P' 
P 

- =  

If p, c ,  and v 

( y  + l)M2 
( 7  - 1 ) M "  + 2 

27M2 - ( 7  - 1) 
Y + I  

(2.11) 

(2.12) 

are  given f o r t h e  dr iver  gas and f o r  t h e  ambient 

gas,  t he  above re la t ions  f o r  the contact surface and f o r  t h e  two 

shock waves provide nine equations f o r  determining the  nine 

unknowns p;, PA, cg, cA, v;, vJ, vfs ,  vss, and vc.  

We may now inquire about the response of t he  magnetosphere t o  

t'ne ari-lval of a fast  e r  slow shock wave. b i t e  de t a i l ed  calcula- 

t i o n s  would be necessary f o r  determining the  precise change i n  the  

magnetosphere on the  a r r i v a l  of a shock wave. A t  t h i s  time, however, 

we wish simply t o  v e r i f y  t h a t  there  w i l l  be a compression of the  

magnetosphere, with a corresponding increase i n  t h e  horizontal  

component of t he  magnetic f i e l d  a t  the  surface of t h e  ear th ,  at 

t h e  time of a r r i v a l  of t he  f a s t  shock, and opposite changes a t  
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the  t i n e  of a r r i v a l  of the  slow shock. "fie calculat ions of Spre i te r  

and Hyett [1963] show t h a t  t he  ''side'' In6 " t a i l "  02 t he  magnetosphere 

are  sens i t ive  t o  the  value of p and insens i t ive  t o  the  value of 

pv2. 

be compressed when the  f a s t  shock a r r ives  and expanded when the  

slow shock a r r i v e s .  

Since p' > p, t he  side and r ea r  of t he  magnetosphere should 

One may expect fu r the r  t ha t  t h e  response of t he  f r o n t  of t he  

magnetosphere w i l l  be re la ted  t o  the  t o t a l  flux of  momentum, which 

i s  given by 

One may ve r i fy  t h a t  

(2.16) 2 P' - P = ( p '  - P)vs 

where vs i s  the  ve loc i ty  of the shock wave (vfs or vss). Since 

p' > p, P' > P. However, we may instead consider t he  stagnation 

pressure ( t h e  pressure a t  the  "nose" of t he  magnetosphere) as an 

ind icz tor  of the  influence of the s o l a r  wind on the  f ron t  of t h e  

magnetosphere. For f l o w  which is  subs tan t ia l ly  supersonic with 

respect t o  the  ear th ,  we may use t h e  formula [Landau and Lifschi tz ,  

Y +1 Y 

In  t h i s  case,  pv2 

pv2 

i s  much larger than p, so t h a t  t he  change in 

at  the  shock wave i s  given approximately by (2.16) .  The 

stagnation pressure w i l l  therefore increase with the  a r r i v a l  of 
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t he  fast  shock and decrease with the  z r r lva l  of The slow shock. 

These changes i n  pressure w i l l  l e td  t o  a sudden cornpression ana 

expansion, respectively,  of  t he  nagnetosphere, leading t o  a sudden 

increase and a sudden decrease, respect ively,  i n  t he  hor izonta l  

component of the  geomagnetic f i e l d  a t  the  e a r t h ' s  surface.  

We now consider the  conditions which must be s a t i s f i e d  i n  

order t o  obtain two shock waves ra ther  than one shock wave and one 

ra refac t ion  wave. 

t h e  two regimes by considering tha t  t h e  s t rength of one of t he  

We may ar r ive  a t  one of the  boundaries separating 

shock waves, say the  fas t  shock wave, has zero s t rength .  Tnen the  

conditions a t  the  fas t  shock a re  as follows: 

(2.18) 
\ Ma = 1, M& = 1 

P& = Pa, PA = Pa 

c; = c,, v; = v, 

I3y using equation (2.1) and (2 .2 )  and inspecting the  r e l a t ions  

which hold a t  the  slow shock, we a r r ive  a t  

MA2 - 1 
U 

Cd v - v a = 2  
( r  + m a  d 

W e  a l so  see from ( 2 . ~ ) ~  (2.i3j, ariir  (2.18) t h ~ t  

fas t  shock wave i s  t o  be of zero s t rength and the  slow shock wave 

of nonzero s t rength .  

pa > pa if the  

Equation (2.19) may be expressed as a r e l a t ion  between 

cd/(vd - va) and pa/pd. 

t h a t  higher r e l a t i v e  gas ve loc i t i e s  (or lower temperatures) c l e a r l y  

If we der ive t h i s  r e l a t i o n  and then note 
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favor the  process of the  fornetion of -xo shocks, we f ind  t h a t  one 

of t he  conditions f o r  the forc-tion or’ T V O  shocks i s  [Lmciau m d  

Lifschi tz  , 1.959 ( p  . 363) 1 

We see immediately t h a t ,  if pa/pd < 1, the  condition should 

be replaced by -@+ + 1.) - f (Y - l)]r’2 
p2 < i f  - > 1 (2.21) 

‘a 

vd - va pa - -  pd 1 
pa 

The condition represented by (2.20) and (2.21) i s  shown 

Fig .  3 < schematically i n  Figure 3 .  

s ign i f icant  sudden increase in  ve loc i ty  of the  so la r  wind, if  it 

It appears from t h i s  diagram t h a t  any 

i s  not associated with a remarkable change i n  pressure, i s  l i k e l y  

t o  produce the  double -shock configuration . 

3 .  STRONG-SHOCK APPROXIMATION 

Mach numbers Ma and Ma a re  large compared t o  un i ty .  It appears 

t h a t  t h i s  requirement i s  m e t  by t h e  shock waves produced by the  

enhanced outflow of so la r  wind which occurs a t  t he  time of a major 

so la r  f l a r e ,  such as produces a s i g n i f i c a r t  geomqnetic storm. In  

the  following formulas, we adopt t h e  value 7 = 5 / 3  appropriate t o  

a f u l l y  ionized gas such as the solar  wind. 



If M >> 1, we obtain from (2.11) 

Hence (2.12) leads t o  the  fami l i5 - r  r e s u i t  

(2.13) leads t o  

-= 7)' -M2 2Y = 1.25 M 2 

P y + 1  

and (2.14) leads t o  

(3 .3)  

(3 .4)  

We now f ind  from (2 .4)  and (2.5)) thzt  vfs and v; may be 

related t o  var c,, and Ma by 

v = V, + Maca ( 3  3)  fs 

VL = v, + 0.75 Maca (3.6) 

Similar re la t ions  fo l low from (2.6) and ( 2 . 7 ) .  

use (2 .1 ) ,  these r e l a t i o n s  lead t o  

I f ,  i n  addition, w e  

vss = va + 0.75 M,C, - 0.25 M ~ C ~  (3 .7)  

Vd = v a + 0.75 Mac, + 0.75 MdCd ( 3  .8) 

I n  order t o  f ind  Ma and Md, w e  need another r e l a t ion  i n  

addi t ion t o  (3.8) . 
We write 

Tnis is  provided by the  pressure condition (2.2) . 

(3.9) 
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so thax h2 i s  the  r a t i o  of the densi:y c;" the  5 r ive r  gas t o  t h a t  

of  the  aqbient gas .  Equatiom (3.2) ~nc? ( 3  .S) show t h z t  

from which, with the  help of (2 .3)  xnd (3 .9 ) ,  we f ind  t h a t  

We now f ind  from (3.8)  an6 (3.11) t h a t  

It i s  now possible t o  express the ve loc i t i e s  of t he  f a s t  and slow 

shock waves i n  terms of va and vd as follows: 

4. DISCUSSION 

- ,  
IT; i s  IIOW iiecesszqr incpire whether the  above formulas may 

be f i t t e d  t o  observations of geomagnetic storms displaying both 

posi t ive and negative sudden impulses. It i s  necessary t o  f i n d  a 

geomagnetic s torm f o r  which the associated f l a r e  i s  wel l  i den t i f i ed .  

For t h i s  reason, we se lec t  the f l a r e  of Ju ly  10, 1.939 and the  

resu l t ing  geomagnetic storm of Ju ly  11, 1959. Tne posi t ive sudden 
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i ~ p u l s e  occurred 38.3 hours ~ f t e r  the f l z sh  g'nase or' the f l a r e ,  md 

the  negative sudden ixpulse occurred 8.5 hours the rea f t e r .  

Wnen we come t o  r e l a t e  our slrr.>le theory TO observations of 

geoxagnetic storms, sone of t he  1izitz'GTms of  our t rea txent  become 

evident.  According t o  theory [ lmker ,  19631, the  spee2 of t he  

solar wind does not vary grea t ly  'seyoncl 2 <e?? solar rziiii f r o n  t he  

sun. Although one vou~d. cot  expect t h a  the  enhanced f l ~ x  of so l a r  

wind produced by an explosive phenorrmon, such as  a f l a r e ,  would 

be constant over a long in te rvz l  of t i n e ,  the  t h e  scale  of t h e  m a i n  

phase of a large so la r  flare has a duration of  several  hours, a d  

t h i s  can be suf f ic ien t  for ciiscussion of the  double-shock phenomenon. 

Since the  Mach numbers of  t he  two shock wzves depend only on t h e  

r e l a t i v e  ve loc i ty  of the  dr iver  and arbient  gases, on the  densi ty  

r a t i o  of these gases, and on t h e i r  temperatures, it i s  s t r i c t l y  

necessary t h a t  a l l  these quant i t ies  remain constant i f  t h e  shock 

Mach numbers are  t o  remain cor-szant. One would expect t h e  r a t i o  

of dens i t i e s  t o  remain constant, since each gas stream is  expanding 

i n  the  same wzy as t he  gas moves at7ay f r o n  t h e  sun. However, the  

temperatures ot' both gases w i i i  drcp as t h e  g;eses t rave l  from the  

sun t o  t h e  ea r th .  For these reasons, and. because we are neglecting 

t h e  ro l e  of the  mqqe t i c  f i e l d ,  one should not look f o r  too  close 

a correspondence between observaaions m d  t h e  simple theor ies  of 

Sections 2 and 3 .  It appears t ha t  correspondence w i l l  be b e t t e r  

for strong shocks than f o r  we& shocks, since the  ac tua l  values of 

t h e  temperatures of the ambient and dr iver  gases do not appear 

i n  formulas (3.13) and ( 3  .l4). 
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We therefore  'oegin '~y applying eGdzzions ( 3  .l3) m d  (3 .14)  t o  

the geomagnetic s torx  phenozenon. %e &ove Lzza concernb-g the  

time delay between t h e  occilrrence of z f i x e  aqd the  occurrence of 

the  sudden impulses lead t o  the  estinases 

vss = 888 km/sec. 

vcs = 1085 :c?/sec a d  

We readi ly  find from (3.13) and (3.14) t h a t  

so t h a t ,  i n  our case, Vd - v;; = 591 km/sec, and t h a t  

v - v a  fS A =  (4.2) 

If va i s  known, vd and A are now determined. Since no measure- 

ments of the  so la r  wind were ma& i n  1939, we must consider various 

possible values of va.  

time delays may be explained i?y any of t he  s e t s  of parameters 

l i s t e d  i n  Table 1. The Mach niL?ibers given i n  Table 1 have been 

estimated on the assunqtion that  

t o  a temperature of 10 

c l ea r  t h a t ,  with t h i s  choice of temperzture, the  strong-shock 

In t h i s  wzy, we f ind  t h a t  t he  observed 

Table 1 < 
ca = c = 30 k?i/sec, corresponding d 

deg of f u l l y  ionized hydrogen gas .  5 It i s  

assumption i s  unaccepta-Die io1 va = LOO, 

approximation f o r  

temperature would, of course, make the  strong-shock assumption 

M-/SPC: but i s  a f a i r  

va = 600 km/sec. A smaller value of t he  gas 

more acceptable.  

It i s  possible t o  draw up a s imilar  t a b l e  on the  bas i s  of 

the  formulas of Section 2, provided one can r e l a t e  Mc t o  M'cl 

for each shock. We f ind  from ( 2  .ll) and (2.14)  t h a t  

... . 



(4 .3)  

f o r  7 = 3 / 3 .  Tfle procedure i s  2s I ' o l l o i : ~ :  

For known values of vfs, v and L s s u x d  values oI" va, ca, cd, 
S S  

one may determine from (2 .h)  and then, using ( 4 . 3 ) ,  one may 

determine vi (which i s  the  szze 8s v a d  V I )  from ( 2 . 5 ) .  One 

may then determiie id!c' f r o 3  (2.7) r i d ,  dezer-clnir-g Nd f rm ( k . 3 ) ,  

one may f i n a l l y  f ind  vd from ( 2 . 6 )  . iI %his  proceaure i s  applied 

-GO the  event considered above in  the  strong-shock approxination, 

w e  a r r ive  a t  t he  se?;s of parmeters  given i n  Tzble 2 .  

r a t i o  i s  evaluated f r o m  

1% 

c d 

c , d  

Table 2 < The densizy 

(4.4) 

for va = 600 km/sec, t he  estirr,ate of the  dr iver  gas ve loc i ty  i s  

not very d i f f e ren t  from tnaz ob-caiiied i n  Ta'alc 1, although there  i s  

a subs tan t ia l  difference i n  the  estimate of pd/pa. For 

= 500 km/sec, there  i s  ai znbiguity i n  determining Ma.  For va 

va = 400 h / s e c ,  no solution i s  possibie . 
One mzy v e r i f y  from Figure 3, t h a t ,  f o r  a l l  s e t s  of pa rme te r s  

l i s t e d  i n  Tables 1 and 2, the  c r i t e r ion  f o r  the  generation of two 

shocks i s  s a t i s f i e d .  

Although many approximations have been made i n  t h e  course of 

t h i s  m a l y s i s ,  it appears f ron  t h i s  discussion t h a t  posi t ive and 
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negative suclien inpulses nzy, 1~ f a c t ,  be  Lztributz3le t o  a p z i r  

of shock waves generazed by an enhmceci  91.a 02 the  so lar  wind 

a t  the  time of a so la r  f l a r e .  
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c 

va( k r / s e c )  

400 

500 

600 

13 -7' 

11.7 

9 -7' 

2.1 

4.1 

6.1 

l+k 

8 - 3  

2.6 

TKBLE 2 .  Possible k r m e t e r s  l o r  July 11, 1959 Event 

Using Equations of SectTon 2 

va( km/sec) pd/pa 

400 nT0 SOLLTIOK 
/' 9k8 1.2 111 

500 11.7 { -or 
t 983 

600 9 -7 1128 4.8 4.1 
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Fig. 1. Initial configurLtion in Rie::ai* s probler.. 

FLg. 2. 

Fig. 3. Condition to be satisI 'ied -GO -x-oCuce two shock waves 

Configuration after c o l l i s i o n  of gzs szrezzs.  

( 7  = 5/31. 
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